1. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy. 2022 Jan 5;30(1):256-267. 通讯作者; 2. CRISPR/Cas9-mediated gene correction in newborn rabbits with hereditary tyrosinemia type I, Molecular Therapy. 2021, Mar 3;29(3):1001-1015. 通讯作者; 3. Generation of permanent neonatal diabetes mellitus dogs with glucokinase point mutations through base editing. Cell Discovery. 2021 Oct 12;7(1):92. 通讯作者; 4. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems, BMC, 2020, 通讯作者 5. Development of a rabbit model of Wiskott-Aldrich syndrome, FASEB J, 2020, 通讯作者 6. Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications. 2019, 10(1): 2852. 通讯作者; 7.Efficient base editing for multiple genes and loci in pigs using base editors, Nature Communications, 2019, 通讯作者 8. XIST Derepression in Active X Chromosome Hinders Pig Somatic Cell Nuclear Transfer, Stem Cell Reports, 2018, 通讯作者 9. Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer, Journal of Genetics and Genomics, 2018, 通讯作者 10. Engineering CRISPR /Cpf1 with tRNA promotes genome editing capability in mammalian systems, Cellular and Molecular Life Sciences, 2018, 通讯作者 11. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease. Cell. 2018, 173(4): 989-1002. 通讯作者; 12. CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biology. 2018, 19(1): 164. 通讯作者; 13. Highly efficient RNA-guided base editing in rabbit. Nature Communications. 2018, 9(1): 2717. 通讯作者; 14. Cre-dependent cas9-expressing pigs enable efficient in vivo genome editing. Genome Res. 2017, 27 (12): 2061-2071. 通讯作者;
|